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A direct numerical simulation (DNS) of turbulent flow in a channel with square obstacles 

mounted on a wall was carried out. The Reynolds number was 6820 based on the bulk velocity 

in the channel and the channel height. The main objective of the work was to evaluate statistical 

data from the t ime-dependent numerical solution. The influence of  numerical and statistical 

errors on these data was examined. A comprehensive data base including 290 correlations was 

set up for testing and improving turbulence models for this complex, separated flow. 
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1. In troduct ion  

Despite: the progress in numerical algorithm 

and computer power, reliable numerical predic- 

tion of complex turbulent flows is still a chal- 

lenge. Direct numerical simulations (DNS) of 

these turbulent flows require much computing 

time and cannot be applied as a standard engi- 

neering tool. Therefore, the Reynolds averaged 

equations or, for special cases, large eddy simula- 

tions have to be used together with appropriate 

turbulence models to do practical flow field 

predictions. However, even the most advanced 

turbulence models have shortcomings in predict- 

ing complex separated flows. Therefore, the fur- 

ther improvement of these models is one of the 

most important tasks in computational  fluid 

dynamics. Statistical data derived from direct 

numericai simulations of  turbulent flows are good 

tools for comparing directly closure formulae 

with the terms being modelled. Such DNS data 
bases can provide guidelines for model developers 

and model testing. For simple developed channel 

flow, such data bases were created by Mansour et 

al. (19881) or Gilbert  and Kleiser (1991). More 
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recently, a data base for separated flows was 

created by (Le et al., 1993). 

The paper presents a direct numerical simula- 

tion of  a turbulent channel flow over two-dimen- 

sional square obstacles. The physical problem 

and the numerical method are illustrated in chap- 

ter 2. In chapter 3, the mean flow is shown and 
compared with experiments of  Dimaczek et al. 

(1989). Special emphasis is laid on the error 

estimation for the statistical data in chapter 4. The 

budget of Reynolds stresses is presented in chap- 

ter 5 and conclusions can be found in chapter 6. 

2. P h y s i c a l  Problem 

and N u m e r i c a l  M e t h o d  

The turbulent flow over rectangular obstacles 

has been studied by several authors (e. g. Tropea 

and Gackstatter, 1985; Dimaczek et al., 1989; 

Werner and Wengle, 1989). In spite of the simple 

cartesian geometry, the flow topology is very 

complex with primary and secondary separation 

regions around the obstacle (see streamlines in 
Fig. 2 (a)) .  The computational domain is shown 

in Fig. 1. Its length, height and width was set to 

I6h, 2h and 4h respectively, where h is the height 

of the square obstacle. No-s l ip  boundary condi- 

tions were employed at the walls, and periodic 

boundary conditions imposed in both the homo- 

geneous (x3) and the streamwise direction (Xl)" 
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Periodicity in the streamwise direction was cho- 

sen to avoid the expensive generation of input 

data and problems with appropriate outflow 

conditions. Moreover, the length of the 

computational domain could be much shorter 

than using in/outflow conditions. However, when 

applying periodicity in the xl-direction, we actu- 

ally simulate the flow in an infinitely long chan- 

nel over a periodic array of obstacles rather than 

the flow over a single obstacle. The effect of this 

approach will be discussed in chapter 3. The 

Reynolds number based on the bulk velocity UB 

in the channel and the channel height H = 2 h  was 

6820. 

The incompressible Navier-Stokes equations 

were solved by applying a finite volume method 

on a staggered grid. The method is of second 

order accuracy in space and time. The vectorized 

code was optimized and run on a NEC-SX3 at 1. 

5 GFLOPS. A detailed description of the numeri- 

cal scheme is given in Yang and Ferziger (1993). 

Two runs on two non-equidistant grids (204 • 72 

x 36 and 384 • 168 x 72) were performed to check 

out the influence of the numerical resolution. The 

wall nearest grid points of the fine grid are locat- 

ed typically one wall unit apart the wall. 

The numerical simulation and the data evalua- 
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Fig. 1 Geometry of computation domain. 
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(a) Streamlines and (b) isobars of the mean 
flow. 

tion were done in succession. After an initial 

transient period the velocity and pressure fields 

were stored every 80th time step during an inter- 

val of 130 time units (h/UB). This time interval 

corresponds to more than 9 flow-through times. 

On completion of the simulation all statistical 

data were calculated by averaging over the homo- 

geneous direction (x3) and the time interval 

mentioned above. 

3. M e a n  Flow Results  

The calculated streamlines of the time averaged 

flow are shown in Fig. 2 (a). The separation and 

reattachment points are connected by dashed 

lines. Three primary recirculation zones at the 

front, top, and rear face of the obstacle and one 

secondary recirculation can be seen. Two of the 

recirculation zones are connected by a free stagna- 

tion point near the trailing edge of the obstacle. 

lsolines of the pressure are plotted in Fig. 2(b). 

The pressure drop caused by the obstacle can be 

observed up to 3h upstream of the constriction. 

The topological structure of the instantaneous 

flow field is completely different from that of the 

averaged flow field. This is shown in Fig. 3 by 

plotting regions of negative streamwise velocity 

UI- in Fig. 3 (a), (b) these regions are plotted for 

the midplane of the computational box ( z=2h)  

at different times. Various points of separation 

and reattachment and their temporal variations 

illustrate the complex time-dependent structure of 

this flow. Small regions of back flow can be 

observed up to 9h downstream the obstacle at the 

n . . t ~  ~ -  - ~ .  
' -~ -z  o z ~ ~ s l o  

x 

4 z p ~ ,o 6 8 

(c) 

Fig. 3 
x 

Regions of negative streamwise velocities Ut 
from instantaneous flow fields at z=2h  and 
h=72.98 (a) and 12=77.04 (b) and aver- 
aged flow field (c). 
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Fig. 4 
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Profiles of normalized velocity components 
lJ~ and U2 at x = - l . 2 h ,  x=0.08h,  x =  
0.48h and x=2h;--DNS, o experimental 
data of Dimaczeck et al. (1989). 

lower wall, in the core flow of the channel, and 

even at the upper wall. This is a consequence of 

the high turbulence level generated by the shear 

layer above the obstacle. By applying the average 

process, the flow structure is drastically sim- 

plified, and only two regions of the back flow 

remain (Fig. 3(c)).  These pictures illustrate the 

loss of information about the flow structure by 

the Reynolds averaging. 

Profiles of the mean velocities at four cross 

sections are shown in Fig. 4. Upstream of the 

obstacle, the flow is accelerated in the upper part 

of the channel, caused by the displacement effect 

of the obstacle. This results in an asymmetric U~ 

profile and positive U2 values at x : : - - 1 . 2 h .  The 

development of a shear layer with a thin recircula- 

tion zone above the obstacle can be seen in the 

second and third profiles ( x : 0 . 0 8 h  and x :  

0.48h) of Fig. 4. The flow around the leading 

corner of the obstacle leads to a pronounced peak 

in the C~ profile at 0.08h. The forth section is 

located downstream the obstacle and shows the 

backflow of the large recirculation zone at x : 2 h .  

Experimental data of Dimaczek et al. (1989) 

are included in the profiles of Fig. 4. This experi- 

ment was performed at a Reynolds number of 

84000 with a fully developed channel flow up- 

stream of the obstacle. Although the experimental 

flow cortditions are quite different from those 

applied in our simulation, the predicted and 

measured data are in almost perfect agreement at 

the sections upstream and above the obstacle. The 

principle flow phenomena seem to be similar in 

both the predicted and the measured flow and 

may be only little affected by Reynolds number 

effects or the upstream flow. At the fourth section, 

one h downstream the obstacle, the predicted U1 

profile slightly differs from the measured values. 

The predicted shear layer expands more rapidly 

than the measured one, which may be attributed 

to the different Reynolds number of simulation 

and experiment. 

4. Error Estimation 

Experimental data for obstacle flows at low 

Reynolds numbers are rare. Moreover, no experi- 

mental data are available for pressure correla- 

tions, dissipation or other higher order terms. 

Therefore, an error estimation is essential for the 

assessment of the calculated data. The data der- 

ived by the statistical evaluation can be affected 

by statistical errors, and numerical errors of the 

simulation or the evaluation process. 

4.1 S t a t i s t i c a l  errors  

The statistical errors decrease with an increas- 

ing number of statistically independent data used 

for the averaging process. We applied the data of 

about 800 time sheets for the evaluation. A second 

evaluation was performed with a reduced averag- 

ing interval (250 time sheets) to check out the 

influence of the statistical errors. 

The mean flow is less affected by statistical 

errors. Even in regions with a high turbulence 

level, the disagreement did not exceed 5% for the 

mean values. A different behaviour can be obser- 

ved for some higher order correlations. For exam- 

ple, the profiles of the dissipation rate e and the 

turbulent diffusion 7",,= (uiuiuk),~/2 of the tur- 

bulent kinetic energy k are shown in Fig. 5 

calculated with averaging intervals z.JTav of 130 

and 40 time units, respectively. The dissipation is 

smooth and little difference can be seen between 

the two curves. By contrast, the profiles of the 

triple correlations are superposed by fluctuations. 

High amplitudes of these fluctuations occur in 

regions with high turbulence levels. An increasing 

time averaging interval z/Tar results in a decrease 

of the waviness. 

A possible explanation for this behaviour can 

be found in the different time scales of small and 
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Fig. 5 
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Profiles of the normalized dissipation rate e and the turbulent diffusion of k for different averaging 
intervals ,dTav at x = 3 h .  

large scale elements. Mainly small scale motions 

contribute to the dissipation rate. The time scale 

of these elements is smaller than the time differ- 

ence between two succeeding time sheets. There- 

fore, all the data are statistically independent and 

small statistical errors can be achieved for the 

dissipation rate. The time scale for the large 

turbulent elements exceeds the time difference 

between two succeeding time sheets. Therefore, 

the number of statistically independent data is 

reduced, and the larger statistical errors occur if a 

large scale motion contributes to a correlation. 

Statistical errors deteriorate the smoothness of 

some correlations, but generally they do not 

change the principal shape of the profiles. To 

ensure smooth profiles for all correlations, the 

time averaging interval of the present simulation 

should be extended by a factor of 5. Unfortunate- 

ly, this was not possible because the cpu time 

resources were limited. 

4.2 N u m e r i c a l  errors 

An extra run was performed with approximate- 

ly half the grid points of the fine grid DNS in 

each direction. A complete evaluation of the 

resulting data was carried out subsequently. 

Comparison of the results of both simulations can 

give a rough idea which parts of the results are 

mostly affected by an insufficient numerical reso- 

lution. 

Four flow quantities were shown in Fig. 6 to 

illustrate the results of the comparison. Profiles 

were plotted at the midpoint of the obstacle ( x =  

0.5h) and downstream of the obstacle (x=3h)  

near the centre of the large recirculation zone. 

The profiles of the mean velocities of coarse 

and fine grid simulations agree well in the whole 

computational domain with the exception of a 

thin separation region at the top wall of the 

obstacle (Fig. 6(a)) .  For the coarse grid simula- 

tion, the width of the shear layer grows more 

rapidly. In contrast to the experimental results 

and the fine grid solutions, the flow reattaches 

near the trailing edge of the obstacle. Profiles of 

turbulent fluctuations, represented by the turbu- 

lent kinetic energy k can be seen in Fig. 6(b). 

Differences of less than 10% can be observed, 

mostly concentrated near the separation zones. 

More pronounced deviations can be detected in 

Fig. 6 (c) for the dissipation rate, which is under- 

predicted throughout the flow field by the coarse 

grid simulation. Differences up to 60% occur 

mainly in the regions of separation zones. Aston- 

ishingly, many of the higher order correlations 

were well predicted even by the coarse grid simu- 

lation. An example is given in Fig. 6 (d). Profiles 

of the turbulent diffusion Tk resulting from the 

coarse and fine grid simulation are close together 

even in the "critical" region around the obstacle. 

Two conclusions can be drawn from the com- 

parison. Firstly, the numerical resolution is clear- 

ly insufficient near the top wall of the obstacle for 

the coarse grid simulation and probably also for 

the fine grid DNS. The remaining flow field seems 

to be well resolved at least with the fine grid 

simulation, and numerical errors seem to have 

negligible effects on the correlations away from 

the obstacle. Secondly, some of the turbulent 

quantities, above all the dissipation rate, are 

strongly affected by numerical errors, whereas 
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other correlations are less sensitive and can be 

well predicted even by the coarse grid simulation. 

The differences between coarse and fine grid 

solutions were assumed to be an upper bound for 

the numerical errors of the fine grid DNS. 

5. Statistical Quantities 

5.1 Reynolds stresses 
Predicted Reynolds stresses at four different 

sections are shown in Fig. 7. At the first section, 

2h upstream the obstacle, the flow is character- 

ized by a decaying turbulence. The asymmetry is 

nearly balanced, but all turbulent fluctuations are 

one order of magnitude higher than the values 

known from a fully developed channel flow. At 

the next section ( x = - 0 . 5 )  flow in the upper 

part of the channel is strongly accelerated due to 

the displacement effect of the obstacle. As a 

consequence, the streamwise fluctuations u~u~ 

decrease below the values of the wall normal 

component u2u2. Above the obstacle strong peaks 

of all components of the Reynolds stress tensor 

produced by the shear layer can be seen in Fig. 7 

(c) ( x = 0 . 5 h ) .  Whereas the streamwise fluctua- 

tions dominate in the shear layer region, the 

spanwise and wall-normal fluctuations exceed 

them in the core region above. The kink in the 

curves of all normal stresses in the vicinity of the 

obstacle wall was also observed in related experi- 

ments (Dimaczek et al., 1989), and is therefore 

attributed to the physical effects rather than to a 

numerical deficiency. The profiles displayed in 

the last figure are typical for separated flows. 

Similar shapes can be found in backward facing 

step flows. However, the turbulence level of the 

obstacle flow is clearly higher than that of many 

other separated flows. 

5.2 Budget for Reynolds stresses 
Our evaluation includes all terms appearing in 

the transport equations for the Reynolds stresses 

u~uj, the dissipation rate e, and the vorticity 

correlation w~wi. We restrict ourselves in present- 

ing budgets of the Reynolds stresses uiuj at two 

cross section. The transport equation for these 

correlations reads 

D (u~uj) - P i j +  T,~+ Do+ z~j+ r  So 
Dt 

with the production Po, the turbulent diffusion 

To, the molecular diffusion Do, the pressure 

diffusion ~ro., the pressure strain term r and the 

dissipation eo. For statistically steady flows, the 

substantial derivative on the left hand side 

reduces to the convective transport term -Co. The 

complete formulae for all terms can be found for 

example in Mansour et al. (1988). The budgets of 

the Reynolds stresses ~i~j at x : 0 . 5 h  are plotted 

in Fig. 8. At this section, the correlations are 

mainly determined by the thin shear layer above 

the obstacle. Fig. 8 (a) shows the dominating role 

of the production term Pll in the region of this 

shear layer. The pressure strain term Cn acts as a 

main sink term, and transfers the energy to the 

other normal stress components. The turbulent 

diffusion term To transports the streamwise stress 

from the centre of the shear layer to its edges. 

Outside the shear layer, the magnitude of all 

correlations drop down by more than an order of 

magnitude. 

The pressure strain terms r and r are the 

main product ion terms for the other normal  

Reynolds stresses at this section (Fig. 8(b), (c)). 

In the region of the shear layer, these terms are 

balanced by the convective transport, the viscous 

dissipation and, in the case of u2u2, by the nega- 

tive production term P22. 

The residuals of the budget of all Reynolds 

stresses come up to 20-40% of the respective 

production term in the high shear region. The 

shape and sign of the residuals equal that of the 

related viscous dissipation term. This fact and the 

error estimation presented in chapter 4.2 lead to 

an assumption that strong underprediction of the 

viscous dissipation is the main reason for the 

defects in the balances. 

The behaviour of the budgets at the upper 

channel wall is almost identical to that in a 

developed channel flow. A detailed view of the 

budgets near the top wall of the obstacle can be 

seen in Fig. 8 (e)-(h) .  The meaning of the sym- 

bols corresponds to those of the upper part of the 

figure. The redistribution term 7(11 (Fig. 8(e)) 

and the turbulent diffusion term T22 (Fig. 8(f)) 
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show a maximum near the wall. These are the 

most pronounced differences compared to the 

behaviour of a fully developed channel flow. 

The budgets of all Reynolds stress components 

at the section x = 3 h  are shown in Fig. 9. This 

cross section is located near the centre of the large 

separation region downstream the obstacle. Here, 

the energy containing turbulent elements and the 

corresponding turbulent time scales are larger 

than those above the obstacle. As a consequence, 

the statistical errors are larger at this section 

which results in wiggles in the curves of most 

correlations. 

The profiles of all terms of the budgets look 

qualitatively similar to those reported by Le and 

Moin (1993) for the recirculating flow down- 

stream a backward facing step. The production of 

turbulence is biggest in the middle of the channel 

represented by the term Pn (Fig. 9(a)) .  The 

pressure strain term again acts as a sink for the 

streamwise component of the Reynolds normal 

stress, and is the main "production" term for the 

other normal components. The turbulent diffu- 

sion terms T~ distribute the energy of all compo- 

nents from the centre of the shear layer to near 

wall regions. The budget of the Reynolds shear 
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stress u l u z  is dominated  by the balance of  the 

product ion and pressure strain term. Cont rary  to 

the section at x = 0 . 5 ,  the turbulent  diffusion T l z  

plays only a minor  role. The  residuals of  the 

budgets does not  exceed 5-10% of  the respective 

dominan t  terms, indicat ing small  numerical  errors 

at this section. The  near wall  behaviour  o f  the 

correlat ions at x = 3 h  (Fig. 9 ( e ) - ( h ) )  are similar  

to these above the obstacle with a different scaling 

due to the different wall shear velocity at both 

sections. 

The  product ion  terms of  the Reynolds  normal  

stresses fall below zero in certain parts of  the flow 

field. To illustrate this phenomenon,  we mark 

regions of  negative values of  the product ion term 

of  the turbulent  kinetic energy P h =  u i u ~ O U , . / a x ~  

in Fig. 10. The energy transfer from the mean 

flow to the turbulent  fluctuations, which is a 

normal  si tuation in turbulent  flows, is equivalent  

to a posit ive value of  Pk. However ,  a negative 

product ion term Pk indicates the reverse situation 

with an energy transfer from the turbulent  mot ion 

to the mean flow. Regions of  negative product ion 

can be seen at the front and rear walls and parts 

o f  the top wall of  the obstacle. These zones partly 

coincide with the the temporal  appearance of  
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x 

Fig. 10 Regions of negative production term _P~ of 
1 the turbulent kinetic energy yuiui .  

separation or reattachment points at the adjacent 

wall. Moreover, negative production can be ob- 

served upstream the obstacle where the mean flow 

is accelerated, and also on the upper edge of the 

shear layer above the obstacle. 

is mainly explained with an underprediction of  

the viscous dissipation. Extended regions of  nega- 

tive turbulence production are localized near 

separation or reattachment points and at the edge 

of  the thin shear layer. 

The data base derived from the present simula- 

tion will be a helpful tool for testing and improv- 

ing advanced turbulence models. The obstacle 

flow itself remains a challenge for both direct 

numerical simulations and turbulence modellers. 
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numerica]l errors of the simulation. However, the 

mean flow and also some higher order correla- 

tions can be calculated satisfactorily even with a 

coarse grid simulation. 

Budgets of  the Reynolds stresses were presented 

at two cross sections. The residue of the budgets 
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